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Abstract

The notions of ¢ -stability of systems of ordinary differential equations (ODEs) were
introduced. In this paper, we will extend the ¢,-stability notion to a new type of stability
called total ¢,-stability, and give some criteria and results. Our technique depends on
Liapunov’s direct method. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The problems of the qualitative properties of differential equations has
been successfully studied in different approaches based on Liapunov’s direct

method, such as cone and cone-valued Liapunov function method (see [3]).
Consider the system

X = f(t,x), (L.1)
and the perturbed system
X' = f(t,x) + h(t,x), (1.2)

where f,h€ C[J x #", %], J = [ty,0) and f(¢,0)

=n(t O) = 0, with x(l‘o,lo,XO) =
X9, A" is the n-dimensional Euclidean real space, #

h(t,
= (—00,00). Define
S, ={xxe ', x| <p, p> 0}
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The aim of this paper is to extend the notions of ¢,-stability of [1] to the so-
called total ¢,-stability of the systems (1.1) and (1.2). These notions in the case
of uniformly lie somewhere between uniform ¢,-stability of [1] on one side, and
uniform total stability of [2] on the other side.

Going through [1], we shall investigate these notions and obtain the neces-
sary conditions to construct cone-valued Liapunov function.

Now as in [3], we define a Liapunov function V' (¢,x) € C[J x %", %] and the
function

DU V(1x) = lim sup< V(146 + 0/ (1,3)) ~ V(2,0
The following definitions will be needed.

Definition 1.1 [2]. A function ¢(r) is said to belong to the class 2 if ¢(r) €
C[(0,p),R"],#(0) = 0 and ¢(r) is strictly monotone increasing in r.

Definition 1.2 [2]. A function (¢) is said to belong to the class & if
Y(t) € CJ,RY],¥(t) — oo and (¢) is strictly monotone decreasing in z.

Definition 1.3 [1]. A proper subset K of #" is called a cone if:

() K CK, 430
(i) K +K C K;
Gii) K = K;

(iv) K° # 0 and

W) K (=K) = {0},

where K and K° denote the closure and interior of K, respectively, and 0K
denotes the boundary of K.

The order relation on #” induced by the cone K is defined as follows. Let
x,y € K. Then

x<gy Mff y—xe€eK and x<gxy iff y—xeK°.
The set

K'={peR" (¢,x) 20, xe K}
is called the adjoint cone if it satisfies properties (i)—(v) of Definition 1.3, x € 0K
iff (y,x) =0 for some y € Kj, Ky = K \ {0}.

Definition 1.4 [1]. A function L:D — %", D C %", is called quasimonotone
relative to the cone K if x,y € D and y — x € 0K, then there exists ¢, € K; such

that (¢, — x) and (¢, L(y) — L(x)) = 0.
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Following [1], we define the set
S(p) ={xeK: x| <p, p>0}.

Definition 1.5 [1]. The zero solution of (1.1) is said to be ¢,-equistable if for
each € > 0, there exists d = (¢, €) continuous in %y, for each e, such that the
inequality

((pOaxO) <0 1mp11es (¢0ax*(t)) <g, t= fo,

where here and in the rest of this paper x*(¢) denotes the maximal solution of
(1.1) relative to the cone K C £#".

Other ¢,-stability concepts can be similarly defined (see [1]).

Definition 1.6. The zero solution of (1.1) is said to be totally ¢,-stable if, for
every € > 0,4 € Z#, there exist two constants 6, = (¢, €), d2(, €) such that for
the maximal solution x*(¢) of (1.2) and ¢, € K;;, the inequality

(g, x"(2)) < e for ¢t =t
provided that
(¢01x0) < 51 and (d)Oah(tvx)) < 52'

Definition 1.7. The zero solution of (1.1) is said to be totally ¢,-stable under
permanent perturbations bounded in the mean if for every € > 0,# € %", and
T > 0 there exist two positive constants 0, = ;(¢) and d, = (¢, €) such that
for every solution x(z, #y,x9) of the perturbed system (1.2), the inequality

(o, x"(2)) < e fort =t
provided that

(dg,x0) < 01 and (¢, h(t,x)) < ()
and

0+
/ p(s)ds < 9s.

fo

Definition 1.8. The zero solution of (1.1) is said to be uniformly totally ¢,-
stable if a solution x(¢, #y, x9) of (1.2) is uniformly asymptotically ¢,-stable with
h(¢,0) =0, and (¢py, h(t,x)) < 0(t), o€ ZL.
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2. Main results

In this section, we will discuss and obtain some results of the total ¢,-
stability of the system (1.1).

Theorem 2.1. Let the zero solution of (1.1) be uniformly asymptotically ¢,-
stable. Assume further that

17 (t,x) = eI < L@ x =y,

for (t,x),(t,y) € #* x K, L(t) = 0 is a continuous function defined on #*, and

/IMTL(s)ds

fo

<ol o is a constant.

Then there exists a cone-valued function V (t,x) with the following properties:

D)V ecCz xS(p),K|,V(t,0) =0, and V(t,x) is locally Lipschitzian in x
relative to K for each t € ", and for a continuous B(t) > 0,
(ID al(¢pg,x*(1))] < (g, V (2, x)) < b[(¢o,x*(1))] a,b € A and for ¢, € K; and
(t,x) € A" x K.
(III) D+(¢07 V(tvx)) < - C[(¢07X*(t))]7 ceA.

Proof. From the hypotheses, solutions of the system (1.1) exist and are unique.
Let x(¢,1y,x0) be a solution of (1.1) so that xy = x(0,7,x). Define the function
cas

el(nx* ()] = 5 [1 — exp(1 — Aldy.x' ()],

where 4 > 0 is a constant. If (¢, x"(¢)) = 0, then L [1 — exp(—4(¢y,x"(¢)))] = 0.
This implies that ¢(0) = 0. If (¢y,x*(¢)) > 0, then L [I — exp(—A4(¢py,x*(¢)))] is
monotone increasing. It follows that ¢ € K. Now, we define a cone-valued
Liapunov function V(¢,x) by

1+ B
140"
where a,, : S(p) — K is defined in [1] and x*(¢) is the maximal solution of (1.1)

relative to the cone K C #". For x = 0, thus from (2.1), V(¢,0) = 0, and for
6 = 0, we have

(o, x*(8))]x(t 4+ 9,0, 0,(x(0,£,x))) <V (¢,x).
Thus
c[(d)OaX*([))]((rbva([ + 57 07 O'W(JC(O, tvx)))) g (¢07 V(t7x))

V(t,x) =supc[(dy,x (¢))]x(t + 0,0,0,(x(0,2x)))

(2.1)
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and

c[(¢o:x" (1)1 Xo (o, €) = al(o,x™ (1)) < (@0, V' (£,%)), (2.2)

where Xo =min | x;(¢) |, i=1,2,...,n, a(r) = uo(dy,e)c(r) and e = (1,1,...,
I)T. Since the zero solution of (1.1) is uniformly asymptotically ¢,-stable, then
given € > 0, there exist two numbers 6 = d(¢), and T = T(e) which are inde-
pendent of #, such that

(¢01x0) < 5 - (¢07X*(I)) < 6 fOf t= T(e)
By using the fact that (1 + B3)/(1 + 8) < B we get from (4.1) that

1+Bo
149

(90, V(2,3)) = sup l(o 5" ()][( o, (1 + 8,0, 00(x(0, £,x)))]
< supel(Box O][(dox (O TS
< Becl (' (1)
= Bl(g0, X' ()],

that is,

(o, V'(1,x)) <b[(¢o, x"(1))], b e A (2.3)
Combining this with (2.2), we have

al(o,x"(1))] < (o, V' (1,%)) <b(o, x(1), a,b € A (2.4)

This proves (II).
Now, for § = T(e), where T(¢) is a monotonic decreasing function, we have
from uniform asymptotic ¢,-stability that

((]’)O,X*(t)) <e
Hence, if 0 = T(y(¢y,x*())) for y > 0, then
(0, X" (1)) < v(o, ¥"(2))

implies
(B0, ()] < elr(ox" ()]
and
(B0, (D) x(1 8,0, (0,1, 0) T2

< Bel(¢o, X" (1)))(¢o, (1))
< becly (o, x™(1))]
g (d)O’ V([’x))'
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Then

el( B (D)t + 6,0,0,(x(0,,)) 152

This implies that V' (¢,x) is defined only for 0 < < T(y(¢y,x*(¢))). As

1 0
V(t,x)= OigETc[(qSO,x*(t))]u(t + 0,0, 0,(x(0,2,x))) 1—:_B§ ,

T =T(3(¢g,x"(1)))-
By Corollary 2.7.1 of [2] and for x;,x, € S(p), we have

1V (#,x1) = V(2,5

<V(t,x).

. 1+ B6
sup_cl( B (D))x(1-+ 0.0, 11 (0.1.x))) L 22
0<6<T +

. 1+ B6
o Sup C[(qSva*(t))]x(t"i_57070—‘1’()‘72(071‘7)‘72))) 1 5 H
0<o<T +

sup._el(Bo, ()] 5 o s (0,)) — o220, 1)

0<oLT

<

1 o !
sup o O3 [exp [ Lo)isl o]

0<o<T

<B@Ober = xa ),

<K(t,w)

where

p(e) = k(z,w)

. 1+ Bd !
sup. cl(doox (0557 e [ 2000
0<o<T + 0

locally Lipschitzian in x; and x,. Therefore ¥ (¢,x) is locally Lipschitzian in xi,
X3. Now

[V(t+6,x) = V()| <|V(t+0,x) = V(t+ 0,
+|[V(E+0,y) = V(t+d,y(t+6,6,)l
+V(t+06,9) = V(t, ). (255)

Since V' (t,y) is locally Lipschitzian in y and y is continuous in J, then the first
two terms in the right-hand side of the inequality (2.5) are small whenever
|[y — x|| and 6 are small.

By using (2.1), the third term tends to zero as ¢ tends to zero. Therefore
V(t,x) is continuous in all its arguments.

Let x = x(¢,%,x0),x, = x(t + p,t,x), p > 0. Then we have

1+ Bo
V(t+px,) = sup c[(¢o,x" ()x(t+ p+ 6,0, 0,(x(0,1 + p, )~
0<S<T 1+0
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The continuity of ¥ and the uniqueness of the solution of (1.1) imply that there
exists a point d, in which the upper bound is reached so that we have

1+Bo
149

V(t+ p,xp) = cl(do, " (0)]x(t + p + 0y, 0,0, (x(0,1 + p,u)))

By putting 6, = é; — p and using the fact

1+Bap1+351{ . (B=1p ]
146, 1+ (14 Bé1)(1+6,)

we get

V(t+p,xp) = c[(do,x" (1)) Ix(t + p,0,0.(x(0,1 4 p,u)))
L+ By [ B, ]
149, (1 4+Boy)(1+9,)
(B—1),V(t,x)
(1+Bo)(1+9,)
Since 0<9,<T, 0<p<d;<p+T, T is monotonically decreasing and
using (2.4), we have
V(t+p,x,) —V(tx) o (B—1)V(t,x)
P ST+ Ba)(1+9,)

V(t+p,x,) = V(t,x) (B —1)(¢y, ¥ (1,x))
(‘f’(” p ><K_ (1+B3)(1+9,)

<KV(t7x) -

So
_ (B — 1)(¢07 V<t7x))
(1+ BT (9(g, x*(1)))(1 + T (7(¢o, x*(1))) + Bp
- ﬁ(¢0? V(tvx))’ ﬁ ex.
— Bal(¢o, X" ()] < — (o, x" ()], ceA.

This proves (III), and the proof is completed. [

D™ (o, V' (1,%)) <

<
<

Theorem 2.2. Let the hypotheses of Theorem 2.1 be satisfied. Then the zero
solution of (1.1) is totally ¢,-stable.

Proof. From Theorem 2.1, property (I) holds. Let ¢ > 0 be given, choose
01 = 91(¢€) such that

a(e) > b(0,(¢)) fora,be A
Let x(¢) = x(¢, ty, x9) be any solution of (1.2) such that

(¢o,x0) < 01 and (¢, h(t,x)) < 9, for 6, = dy(€) > 0.
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By condition (IT) of Theorem 2.1, we have V(#,xy) = b(:(¢)). Now, we claim
that

(¢, V(t,x)) < ale), t=0.
This claim leads to

al(¢g, x" (1) < (o, V (1,x)) < a(e).
Then

(0, x"(1)) <e.

This shows that the trivial solution of (1.1) is totally ¢,-stable. Now, we justify
this claim. Define

T(t) - (d)()ﬂ V(tﬂx))ﬂ

and let this claim be false. Then there exist two numbers ¢ and f, with
ty < t; < t, such that

T(n) = b(01(€), T() = ale)
and
T(t) =2 b(01(e)) for t; <t< .
This shows that 7(¢) is nondecreasing in [, %] and so we have
DT(1) =0 (2.6)
From (II) and (IIT) of Theorem 2.1 and for any ¢* € #°, we have
D* (9, V(1)) < — ¢ [(d, ¥ (£.3))]
This implies that
D*T< — ¢ (T) + M|, h(t,%))], M >0
< —c(T)+ Mo,
< = c(b(01(6))) + M,
= —b"(d1(€)) + Moy,
where c¢*(b(r)) = b*(r) € A". Now, choose d, = b*(d,(¢)/M). Then
DT <0,
which contradicts (2.6) and our claim is justified. Therefore the zero solution is

totally ¢,-stable and the proof is completed. O

Theorem 2.3. Let the hypotheses of Theorem 2.1 be satisfied. Then the zero
solution of (1.1) is totally ¢,-stable under permanent perturbation bounded in the
mean.
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Proof. From Theorem 2.1, property (I) holds. Let x(¢) = x(¢, 4, xy) be any so-
lution of (1.2) such that

t0+Tﬁ
(¢g,x0) < 6 — 1 and (o, 4(t,x)) < y(¢), where / p(s)ds < 9,.

fo

Now, by proceeding as in the proof of Theorem 2.2, we arrive at the inequality
(2.6). From (I) and (IIT) of the property (I) we have

DTS —c"(T)< = (T)+ M | (g, h(t,x)) |, M >0
< = c(T) + My(s).

Integrating from ¢, to 7%, we get
T* T*
T< f/ c*(T(s))ds+M/ y(s)ds
t )
-
< _/ ¢ (T(s))ds + M.
lo

Now, if we choose 6, = M~! ftOT c*(T(s))ds, then T < 0, that is
(¢o, V(t,x)) <O.
But this is impossible since by the condition (II),
(b0, V(1,x)) = al(¢o, x"(¢))], ae€ .
Therefore the result is immediate. [
Theorem 2.4. Let the conditions of Theorem 2.1 be satisfied, and further assume

that h(t,x) is locally Lipschitzain in x relative to the cone K C #" for each
t € R*. Then the zero solution of (1.1) is uniformly totally ¢,-stable.

Proof. From Theorem 2.1, it follows that

D+(¢+Ov V(tvx)) < - C*[((f’m V(t7x))] +M[(¢O7h(t7x))]
< — (b, V(t,2))] + Mo(r), M >0.

Since 0 € Z, then there exists 7 = T(¢) sufficiently large such that for > T'(e),
we have that ¢(¢) — 0. Therefore

D+(¢07 V(t7x))< _C*(¢07V(t7x))7 tZ T(E)
From (II), we have

D (¢g, V(1,x)) < = " [(o, V(1,%)) + Mo (1) = —c"[(hy, x™(1))].
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where ¢*,a € A" and c*[a(r)] = ¢(r) so that ¢ € #". Now, using conditions (I),
(IT) and (I1I), we see that the conditions of Theorem 3.1 of [1] are satisfied.
Since

[A(2,x) — h(t,y)| <L(@)llx = y|| for a,y € K,
then putting y = 0, we get
(|22, x) | <L (1) Ix]I,

when x = 0, we have ||A(z,0)|| = 0. Therefore from Theorem 3.4 of [1], and
Definition 1.8 the result is immediated. O
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